3,667 research outputs found

    Changes in precipitation and river flow in northeast Turkey: associations with the North Atlantic Oscillation

    Get PDF
    This paper explores the relationships between the North Atlantic Oscillation (NAO) index and precipitation and river flow over northeast Turkey. Precipitation totals and maximum, mean and minimum river flow are analysed at the seasonal scale for 12 and 10 stations, respectively. Pearson’s and Mann-Kendall correlation tests are applied to assess relationships between the NAO index and precipitation and river flow metrics, and to detect trends in time-series. Autumn precipitation totals display significant increasing trends, especially for coastal stations, while inland stations show significant increasing trends for spring precipitation. Minimum and maximum river flow decreases significantly for spring and summer. This tendency implies varying conditions towards a drier regime. Seasonal precipitation patterns show a negative association with the NAO for December–January–February (DJF), March–April–May (MAM) and September–October–November (SON) for some stations. Positive associations between the NAO and winter-extended winter (December–March) river flows are detected for some stations in northeast Turkey

    Global MHD Simulations of Neptune's Magnetosphere

    Get PDF
    A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres formed by highly inclined planetary dipoles. Using the MHD code Gorgon, we have implemented a precessing dipole to mimic Neptune's tilted magnetic field and rotation axes. By using the solar wind parameters measured by Voyager 2, the simulation is verified by finding good agreement with Voyager 2 magnetometer observations. Overall, there is a large-scale reconfiguration of magnetic topology and plasma distribution. During the “pole-on” magnetospheric configuration, there only exists one tail current sheet, contained between a rarefied lobe region which extends outward from the dayside cusp, and a lobe region attached to the nightside cusp. It is found that the tail current always closes to the magnetopause current system, rather than closing in on itself, as suggested by other models. The bow shock position and shape is found to be dependent on Neptune's daily rotation, with maximum standoff being during the pole-on case. Reconnection is found on the magnetopause but is highly modulated by the interplanetary magnetic field (IMF) and time of day, turning “off” and “on” when the magnetic shear between the IMF and planetary fields is large enough. The simulation shows that the most likely location for reconnection to occur during Voyager 2's flyby was far from the spacecraft trajectory, which may explain the relative lack of associated signatures in the observations

    Ion temperature anisotropy across a magnetotail reconnection jet

    Get PDF
    A significant fraction of the energy released by magnetotail reconnection appears to go into ion heating, but this heating is generally anisotropic. We examine ARTEMIS dual-spacecraft observations of a long-duration magnetotail exhaust generated by anti-parallel reconnection in conjunction with Particle-In-Cell simulations, showing spatial variations in the anisotropy across the outflow far (> 100di) downstream of the X-line. A consistent pattern is found in both the spacecraft data and the simulations: Whilst the total temperature across the exhaust is rather constant, near the boundaries Ti,|| dominates. The plasma is well-above the firehose threshold within patchy spatial regions at |BX| ∈ [0.1, 0.5]B0, suggesting that the drive for the instability is strong and the instability is too weak to relax the anisotropy. At the mid-plane (|BX|0.1 B0), Ti,⊥ > Ti,|| and ions undergo Speiser-like motion despite the large distance from the X-line

    Prolongations of Geometric Overdetermined Systems

    Full text link
    We show that a wide class of geometrically defined overdetermined semilinear partial differential equations may be explicitly prolonged to obtain closed systems. As a consequence, in the case of linear equations we extract sharp bounds on the dimension of the solution space.Comment: 22 pages. In the second version, a comparison with the classical theory of prolongations was added. In this third version more details were added concerning our construction and especially the use of Kostant's computation of Lie algebra cohomolog

    Multi-beam Energy Moments of Multibeam Particle Velocity Distributions

    Full text link
    High resolution electron and ion velocity distributions, f(v), which consist of N effectively disjoint beams, have been measured by NASA's Magnetospheric Multi-Scale Mission (MMS) observatories and in reconnection simulations. Commonly used standard velocity moments generally assume a single mean-flow-velocity for the entire distribution, which can lead to counterintuitive results for a multibeam f(v). An example is the (false) standard thermal energy moment of a pair of equal and opposite cold particle beams, which is nonzero even though each beam has zero thermal energy. By contrast, a multibeam moment of two or more beams has no false thermal energy. A multibeam moment is obtained by taking a standard moment of each beam and then summing over beams. In this paper we will generalize these notions, explore their consequences and apply them to an f(v) which is sum of tri-Maxwellians. Both standard and multibeam energy moments have coherent and incoherent forms. Examples of incoherent moments are the thermal energy density, the pressure and the thermal energy flux (enthalpy flux plus heat flux). Corresponding coherent moments are the bulk kinetic energy density, the RAM pressure and the bulk kinetic energy flux. The false part of an incoherent moment is defined as the difference between the standard incoherent moment and the corresponding multibeam moment. The sum of a pair of corresponding coherent and incoherent moments will be called the undecomposed moment. Undecomposed moments are independent of whether the sum is standard or multibeam and therefore have advantages when studying moments of measured f(v).Comment: 27 single-spaced pages. Three Figure

    Bowen-York Tensors

    Full text link
    There is derived, for a conformally flat three-space, a family of linear second-order partial differential operators which send vectors into tracefree, symmetric two-tensors. These maps, which are parametrized by conformal Killing vectors on the three-space, are such that the divergence of the resulting tensor field depends only on the divergence of the original vector field. In particular these maps send source-free electric fields into TT-tensors. Moreover, if the original vector field is the Coulomb field on R3\{0}\mathbb{R}^3\backslash \lbrace0\rbrace, the resulting tensor fields on R3\{0}\mathbb{R}^3\backslash \lbrace0\rbrace are nothing but the family of TT-tensors originally written down by Bowen and York.Comment: 12 pages, Contribution to CQG Special Issue "A Spacetime Safari: Essays in Honour of Vincent Moncrief

    Statistical modelling of transcript profiles of differentially regulated genes

    Get PDF
    Background: The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA) and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results: Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Splitline" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t) = A + (B + Ct)Rt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data allowed 11% of the Escherichia coli features to be fitted by an exponential function, and 25% of the Rattus norvegicus features could be described by the critical exponential model, all with statistical significance of p < 0.05. Conclusion: The statistical non-linear regression approaches presented in this study provide detailed biologically oriented descriptions of individual gene expression profiles, using biologically variable data to generate a set of defining parameters. These approaches have application to the modelling and greater interpretation of profiles obtained across a wide range of platforms, such as microarrays. Through careful choice of appropriate model forms, such statistical regression approaches allow an improved comparison of gene expression profiles, and may provide an approach for the greater understanding of common regulatory mechanisms between genes

    Super-Alfv\'enic propagation of reconnection signatures and Poynting flux during substorms

    Full text link
    The propagation of reconnection signatures and their associated energy are examined using kinetic particle-in-cell simulations and Cluster satellite observations. It is found that the quadrupolar out-of-plane magnetic field near the separatrices is associated with a kinetic Alfv\'en wave. For magnetotail parameters, the parallel propagation of this wave is super-Alfv\'enic (V_parallel ~ 1500 - 5500 km/s) and generates substantial Poynting flux (S ~ 10^-5 - 10^-4 W/m^2) consistent with Cluster observations of magnetic reconnection. This Poynting flux substantially exceeds that due to frozen-in ion bulk outflows and is sufficient to generate white light aurora in the Earth's ionosphere.Comment: Submitted to PRL on 11/1/2010. Resubmitted on 4/5/201
    corecore